
Lecture 22, page

Web Caching

1CS677: Distributed and Operating Systems

• Example of the web to illustrate caching and replication issues
– Simpler model: clients are read-only, only server updates data

browser Web Proxy
cache

request

response

request

response

Web
server

browser Web
server

request

response

Lecture 22, page

Web Proxy Caching

2CS677: Distributed and Operating Systems

• The principle of cooperative caching.

Lecture 22, page

Consistency Issues

3CS677: Distributed and Operating Systems

• Web pages tend to be updated over time
– Some objects are static, others are dynamic
– Different update frequencies (few minutes to few weeks)

• How can a proxy cache maintain consistency of cached
data?
– Send invalidate or update
– Push versus pull

Lecture 22, page

Push-based Approach

4CS677: Distributed and Operating Systems

• Server tracks all proxies that have requested objects
• If a web page is modified, notify each proxy
• Notification types

– Indicate object has changed [invalidate]
– Send new version of object [update]

• How to decide between invalidate and updates?
– Pros and cons?
– One approach: send updates for more frequent objects,

invalidate for rest

proxy Web
server

push

Lecture 22, page

Push-based Approaches

5CS677: Distributed and Operating Systems

• Advantages
– Provide tight consistency [minimal stale data]
– Proxies can be passive

• Disadvantages
– Need to maintain state at the server

• Recall that HTTP is stateless
• Need mechanisms beyond HTTP

– State may need to be maintained indefinitely
• Not resilient to server crashes

Lecture 22, page

Pull-based Approaches

6CS677: Distributed and Operating Systems

• Proxy is entirely responsible for maintaining consistency
• Proxy periodically polls the server to see if object has

changed
– Use if-modified-since HTTP messages

• Key question: when should a proxy poll?
– Server-assigned Time-to-Live (TTL) values

• No guarantee if the object will change in the interim

proxy Web
server

poll

response

Lecture 22, page

Pull-based Approach: Intelligent Polling

7CS677: Distributed and Operating Systems

• Proxy can dynamically determine the refresh interval
– Compute based on past observations

• Start with a conservative refresh interval
• Increase interval if object has not changed between two

successive polls
• Decrease interval if object is updated between two polls
• Adaptive: No prior knowledge of object characteristics

needed

Lecture 22, page

Pull-based Approach

8CS677: Distributed and Operating Systems

• Advantages
– Implementation using HTTP (If-modified-Since)
– Server remains stateless
– Resilient to both server and proxy failures

• Disadvantages
– Weaker consistency guarantees (objects can change between

two polls and proxy will contain stale data until next poll)
• Strong consistency only if poll before every HTTP response

– More sophisticated proxies required
– High message overhead

Lecture 22, page

A Hybrid Approach: Leases

9CS677: Distributed and Operating Systems

• Lease: duration of time for which server agrees to notify proxy of
modification

• Issue lease on first request, send notification until expiry
– Need to renew lease upon expiry

• Smooth tradeoff between state and messages exchanged
– Zero duration => polling, Infinite leases => server-push

• Efficiency depends on the lease duration

Client Proxy Server

Get + lease req

Reply + lease
read

Invalidate/update

Lecture 22, page

Policies for Leases Duration

10CS677: Distributed and Operating Systems

• Age-based lease
– Based on bi-modal nature of object lifetimes
– Larger the expected lifetime longer the lease

• Renewal-frequency based
– Based on skewed popularity
– Proxy at which objects is popular gets longer lease

• Server load based
– Based on adaptively controlling the state space
– Shorter leases during heavy load

Lecture 22, page

Cooperative Caching

11CS677: Distributed and Operating Systems

• Caching infrastructure can have multiple web proxies
– Proxies can be arranged in a hierarchy or other structures

• Overlay network of proxies: content distribution network
– Proxies can cooperate with one another

• Answer client requests
• Propagate server notifications

Lecture 22, page

 Hierarchical Proxy Caching

Examples: Squid, Harvest

Server

Parent

HTTP

HTTP Read A
1

ICPICP

ICP

2

HTTP

3

Clients

Leaf Caches

12CS677: Distributed and Operating Systems

Lecture 22, page

Locating and Accessing Data

13CS677: Distributed and Operating Systems

• Lookup is local
• Hit at most 2 hops
• Miss at most 2 hops (1 extra on wrong hint)

Properties

(A,X)

Node X

Server
for B

Clients

Caches
Read A

Get A

Read B

Get B
Node Y

Minimize cache hops on hit Do not slow down misses

Node Z

Lecture 22, page

Edge Computing

14CS677: Distributed and Operating Systems

• Web caches effective when deployed close to clients
– At the “Edge” of the network

• Edge Computing: paradigm where applications run on
servers located at the edge of the network

• Benefits
– Significantly lower latency than “remote” cloud servers
– Higher bandwidth
– Can tolerate network or cloud failures

• Complements cloud computing
– Cloud providers offer edge servers as well as cloud servers

Lecture 22, page

Edge Computing Origins

15CS677: Distributed and Operating Systems

• Origins come from mobile computing and web caching
• Content delivery networks

– Network of edge caches deployed as commercial service
– Cache web content (especially rich content: images, video)
– Deliver from closest edge proxy server

• Mobile computing
– devices has limited resources, limited battery power
– computational offload: offload work to more capable edge server
– low latency offload important for interactive mobile applications
– edge server sends results to the mobile

Lecture 22, page

Content Delivery Networks

16CS677: Distributed and Operating Systems

• Global network of edge proxies to deliver web content
– edge clusters of varying sizes deployed in all parts of the world
– Akamai CDN: 120K servers in 1100 networks, 80 countries

• Content providers are customers of CDN service
– Examples: news sites, image-rich online stores, streaming sites
– Decide what content to cache/offload to CDN
– Embed links to cdn content: http://cdn.com/company/foo.mp4
– Consistency responsibility of content providers

• Users access website normally
– Some content fetched by browser from CDN cache

Lecture 22, page

CDN Request Routing

17CS677: Distributed and Operating Systems

• Web request need to be directed to nearby CDN server
• Two level load balancing

– Global: decide which cluster to use to serve request
– Local: decide which server in the cluster to use

• DNS-based approach is common
– Special DNS server: resolve www.cnn.com/newsvideo.mp4
– DNS checks location of client and resolves to IP address of

nearby CDN server
– Different users will get resolved to different edge locations

Lecture 22, page

CDN Issues

18CS677: Distributed and Operating Systems

• Which proxy answers a client request?
– Ideally the “closest” proxy
– Akamai uses a DNS-based approach

• Propagating notifications
– Can use multicast or application level multicast to reduce

overheads (in push-based approaches)

• Active area of research
– Numerous research papers available

Lecture 22, page

CDN Request Processing

19CS677: Distributed and Operating Systems

• The principal working of the Akamai CDN.

Lecture 22, page

CDN Hosting of Web Applications

20CS677: Distributed and Operating Systems

• Figure 12-21. Alternatives for caching and replication  
with Web applications.

Lecture 22, page

Mobile Edge Computing

21CS677: Distributed and Operating Systems

• Use case: Mobile offload of compute-intensive tasks
• Example: augmented reality, virtual reality (mobile AR/VR)

– mobile phone or headset has limited resources, limited battery
– Low latency / response times for interactive use experience
– mobile devices may lack a GPU or mobile GPU may be limited

• Today’s smartphones are highly capable (multiple cores, mobile GPU,
neural processor)

– mobile offload more suitable for less capable devices (e.g., AR
headset)

• 5G cellular providers: deploy edge servers near cell towers
– industrial automation, autonomous vehicles

Lecture 22, page

Edge Computing Today

22CS677: Distributed and Operating Systems

• Emerging approach for latency-sensitive applications
• Edge AI: run AI (deep learning) inference at edge

– home security camera sends feed, run object detection
• Low latency offload: autonomous vehicles, smart city

sensors, smart home etc.
• Edge computing as an extension to cloud

– Cloud regions augmented by local regions
• Local regions are edge clusters that offer normal cloud

service (but at lower latency) E.g., AWS Boston region
– Internet of Things (IoT) data processing sevices

Lecture 22, page

Specialized Edge Computing

23CS677: Distributed and Operating Systems

• Edge accelerators: special hardware to accelerate edge
tasks on resource constrained edge servers
– Nvidia Jetson GPU, Google edge Tensor processing Unit

(TUP), Intel Vision Processing Unit (VPU)
• Example: IoT ML inference on edge accelerators

– Efficient inference on resource-constrained edge servers

Google Edge TPU Nvidia Jetson Nano GPU Apple Neural

Engine

Lecture 22, page

 Cloud and Edge Architectures

24CS677: Distributed and Operating Systems

• Offload to cloud, edge, specialized edge,

Traditional cloud

 (2-tier)

Traditional edge

 (3-tier)

Specialized

 (3-tier)

IoT device

cloud

Edge node

cloud

IoT device

edge nodes
+ VPU/TPU

IoT device
with accelerator

cloud server
+ GPU/FPGA

